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Abstract Umpolung catalysis is studied by a sequence of
model reactions (CPCM in THF, B3LYP/6-31G*) with
different aldehydes and catalysts. We involved addition
of the catalyst to the aldehyde and 1,2-H-migration to
form a carbanionic d1-species, which is the crucial
intermediate according to the Lapworth- and Breslow-
mechanisms. Cyanide, N-methylthiazol-2-ylidene, and a
glycol-based phosphite perform as umpolung catalysts,
formaldehyde, acetaldehyde, benzaldehyde, and acrolein
are substrates in this study. In these aldehyde substrates,
alkyl-substitution disfavors but p-conjugation favors
formation of the carbanionic d1-intermediate. The
nucleophilic carbene, N-methylthiazol-2-ylidene, is the
strongest umpolung catalyst, while the phosphite is
about as active as cyanide.

Keywords Umpolung Æ Catalysis Æ Cyanide Æ
Carbenes Æ Phosphites

Introduction

As early as in 1832, Wöhler and Liebig discovered the
cyanide-catalyzed conversion of benzaldehyde to ben-
zoin [1–3]. In 1903, Lapworth proposed for this reaction,
a spectacular, now a well-established mechanism
involving a a-hydroxyl carbanion as key intermediate
(Scheme 1) [4]. Today, such carbanionic intermediates
are synthetically highly appreciated as d1-synthons [5–7].
It is not only cyanide, but also heterocyclic, nucleophilic
carbenes are suitable for such ‘‘umpolung’’ catalyses. In
vitamin B1, a thiazol-2-ylidene decarboxylates pyruvic
acid in vivo [8]. According to the Breslow [9] mechanism,
thiazol-2-ylidenes and other artificial, chiral carbenes

[10] are not only active catalysts for enantioselective
benzoin-couplings [11–12] (for a computational study on
enantioselective, thiazolium-catalyzed benzoin additions
see: [13]) but also for Stetter-couplings [14–20]. Recently,
Johnson et al. described lithiophosphites as third gen-
eration umpolung catalysts for benzoin-couplings with
acylsilanes. The close analogy to Lapworth- and Bre-
slow-mechanisms is clearly apparent (Scheme 1) [21, 24]
(previous work: [22, 23]).

All three umpolung catalysts, form as central inter-
mediate the carbanionic d1-species in the catalytic cycle
(the generation of formoin (formose) from formalde-
hyde via umpolung under the influence of Ca(OH)2 is
intensively discussed as explanation for prebiotic sugar
formation: [25–31]). Here, we compute simplified model
reactions to assess kinetic and thermodynamic propen-
sities for the formation of this key intermediate with
different substrates and catalysts.

Computational details

All structures were fully optimized and characterized by
frequency computations using Gaussian 03 [32] with
standard basis sets [33, 34] and the B3LYP [35] (imple-
mentation: [36–38]) hybrid-DFT method. Zero point
energies and thermochemical analyses were scaled by
0.9806 [39]. The polar solvent THF (e=7.58) was
considered for optimizations using the polarizable con-
ductor calculation model (CPCM) [40, 41] with Pauling–
Merz–Kollman atomic radii with explicit hydrogen
atoms and the ofac=0.8 and rmin=0.5 settings.

Results and discussion

Cyanide represents the simplest of the three types of
umpolung catalysts. To assess intrinsic catalyst charac-
teristics, the formation of the crucial d1-intermediate
was computed neglecting counterions (Scheme 2) [14].
Because of the high polarity of the structures, polar

Dedicated to Professor Dr. Paul von Ragué Schleyer on the
occasion of his 75th birthday

B. Goldfuss (&) Æ M. Schumacher
Institut für Organische Chemie,
Greinstrasse 4, 50939 Köln, Germany
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solvent environments (here THF) are more suitable than
gas-phase computations. Additional diffuse functions
provide only small corrections (Tables 1, 2). Relative to
isolated reactants, a stable adduct forms from cyanide
with formaldehyde (�3.3 kcal mol�1, Scheme 2), but
formation of this adduct is endergonic if entropy is
considered (+5.9 kcal mol�1, Table 1). The adduct
transforms via 1,2-H-migration in transition structure
CN-TS (Scheme 2, Fig. 1) to the unstable (20.9 kcal
mol�1) carbanionic d1-species (Scheme 2, Table 1).

Substituted (R) aldehydes form less stable adducts
with cyanide than formaldehyde (Scheme 3, Ta-
bles 3, 4). Because of these thermodynamically instable
adducts with R „ H, even lower activation barriers
for the umpolung step relative to formaldehyde
(Ea=51.4 kcal mol�1) are apparent for benzaldehyde

and acrolein (Ea=46.0 and 45.3 kcal mol�1, Scheme 3,
Table 3). The carbanionic d1-species are also less
destabilized for phenyl (only 12.1 kcal mol�1) and
especially vinyl substituents (only 9.8 kcal mol�1) rela-
tive to formaldehyde (20.9 kcal mol�1, Scheme 3)
(Glorius et al. recently reported successful umpolung
reactions with acrolein derivatives using a nucleophilic
carbene catalyst: [42, 43]). The methyl substitution in
acetaldehyde increases the kinetic barrier (Ea=52.3 k-
cal mol�1) and the thermodynamic destabilization of
the d1-species (25.9 kcal mol�1, Scheme 3, Table 3).

A comparison among the three types of catalysts, i.e.,
cyanide, N-methylthiazol�2-ylidene, as an exemplary
nucleophilic carbene, and a glycol-based phosphite
(phosphonate), emphasizes the extraordinary quality of
carbenes for the umpolung of aldehydes (Scheme 4,
Tables 5, 6) (Glorius et al. recently reported successful
umpolung reactions with acrolein derivatives using a
nucleophilic carbene catalyst: [42, 43]). The thiazole-2-
ylidene catalyst exhibits by far the strongest tendency for
adduct formation with formaldehyde (�12.2 kcal mol-1,
Scheme 4). Despite the high stability of this carbene
adduct, the activation barrier (Ea=41.4 kcal mol�1) is
much lower than for cyanide (51.4 kcal mol�1) or for
the phosphite catalyst (52.4 kcal mol�1, Scheme 4).
Furthermore, the crucial d1-species is excellently stabi-
lized by the carbene catalyst forming a neutral, electron-
rich alkene (�11.8 kcal mol�1). Cyanide is slightly
superior to the phosphite with respect to thermodynamic
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Scheme 1 Umpolung catalysts
for conversions of aldehydes
(Ef=H) and acylsilanes
(Ef=SiR3¢) to d1-acyl anion
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aldehydes or Michael-systems
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Scheme 2 Relative electronic
energies for the cyanide-
induced umpolung of
formaldehyde (THF solvent,
CPCM-B3LYP/6-31G*)
referring to isolated reactants
(cf. Table 1) and the electronic
activation energy Ea

Table 1 Relative energies (kcal mol�1) for the cyanide-induced
umpolung of formaldehyde (Scheme 2)

Adduct formation TS d1-species
formation

Eel
ZPE �3.3, �4.3,a �9.3b 48.1, 50.4,a 39.3b 20.9, 19.5,a 11.8b

DH �4.6, �5.7,a �10.5b 46.8, 49.1,a 38.0b 19.4, 18.5,a 10.7b

DG 5.9, 4.9,a �0.2b 57.3, 59.6,a 48.5b 30.2, 28.3,a 20.8b

CPCM optimization in THF, B3LYP/6-31G*, and ZPE (scaled by
0.9806) corrected electronic, enthalpic, and free energies (298 K,
1 bar), relative to isolated adducts (cf. Table 2)
aCPCM-THF B3LYP/6-31+G*
bGas-phase B3LYP/6-31+G*
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and kinetic criteria of the umpolung sequence
(Scheme 4).

The similarity between cyanide- and phosphite-cat-
alysts is not only apparent from similar activation and
reaction energies but also from similar geometries of
the transition structures for the 1,2-H-migrations.
Regarding the transfer of the proton from carbon to
oxygen, the carbene transition structure SN-TS is early

on the reaction coordinate with short C–H (1.205 Å)
and long O–H distances (1.296 Å, Fig. 2). In contrast,
CN-TS (Fig. 1) and PO-TS (Fig. 3) represent late
transition structures with longer C–H (1.222, 1.219 Å)
and shorter O–H distances (both 1.227 Å). Despite the
early nature of SN-TS, its crucial carbon atom is much
more planar coordinated by the catalyst, the hydrogen
(fixed), and the oxygen atoms (angle sum: 353.8�) than
in CN-TS (angle sum: 345.2�) or PO-TS (angle sum:
344.3�). This points to very strong conjugation and
double bond formation in SN-TS and explains both the
low activation barrier and the high stability of the d1-
species.
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Fig. 1 CN-TS, transition structure of cyanide-induced umpolung
of formaldehyde (CPCM-THF-B3LYP/6-31G*, bond distances in
Angstrom, angles at carbon refer to fixed substituents)

Table 2 Total energies (a.u.) for the cyanide-induced umpolung of formaldehyde (Scheme 2)

O=CH2 CN- Adduct TS d1-species

Eel
ZPE �114.48361 �92.93493 �207.42374 �207.34183 �207.38523

H �114.47979 �92.93163 �207.41868 �207.33677 �207.38051
G �114.50528 �92.95398 �207.44991 �207.36792 �207.41107
Eel
ZPEa �114.49402 �92.95992 �207.46082 �207.37360 �207.42293

Ha �114.49020 �92.95661 �207.45582 �207.36849 �207.41730
Ga �114.51570 �92.97896 �207.48692 �207.39963 �207.44964
Eel
ZPEb �114.48259 �92.86068 �207.35803 �207.28068 �207.32449

Hb �114.47878 �92.85738 �207.35285 �207.27561 �207.31908
Gb �114.50426 �92.87974 �207.38429 �207.30677 �207.35078

CPCM optimization in THF, B3LYP/6-31G*, and ZPE (scaled by 0.9806) corrected electronic, enthalpic, and free energies (298 K, 1 bar)
aCPCM-THF B3LYP/6-31+G*
bGas-phase B3LYP/6-31+G*

Table 3 Relative energies (kcal mol�1) for the cyanide-induced
umpolung of different aldehydes (Scheme 3)

R= Energy
(kcal mol�1)

Adduct
formation

TS d1-species
formation

H Eel
ZPE �3.3 48.1 20.9

DH �4.6 46.8 19.4
DG 5.9 57.3 30.2

Methyl Eel
ZPE 3.3 55.6 25.9

DH 2.2 54.6 25.1
DG 13.2 65.4 34.8

Phenyl Eel
ZPE 5.2 51.2 12.1

DH 4.4 50.4 11.6
DG 15.0 61.2 21.9

Vinyl Eel
ZPE 4.9 50.2 9.8

DH 4.0 49.2 9.2
DG 14.7 60.1 19.3

CPCM optimization in THF, B3LYP/6-31G*, and ZPE (scaled by
0.9806) corrected electronic, enthalpic, and free energies (298 K,
1 bar), relative to isolated adducts (cf. Table 4)
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Conclusions

Aldehyde substrates with p-conjugation, i.e., phenyl or
vinyl substituents, form the crucial carbanionic d1-
intermediate more easily than formaldehyde or alde-
hydes with alkyl substituents. Phosphites, the new class
of umpolung catalysts, resemble more cyanide than
nucleophilic carbenes in umpolung reactions due to
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Fig. 2 SN-TS, transition structure of carbene-induced umpolung
of formaldehyde (CPCM-THF-B3LYP/6-31G*, bond distances in
Angstrom)

Table 4 Total energies (a.u.) for the cyanide-induced umpolung of
different aldehydes (Scheme 3)

Formaldehyde Adduct TS d1-species

R = H
Eel
ZPE �114.48361 �207.42374 �207.34183 �207.38523

H �114.47979 �207.41868 �207.33677 �207.38051
G �114.50528 �207.44991 �207.36792 �207.41107
R = methyl Acetaldehyde
Eel
ZPE �153.78571 �246.71535 �246.63201 �246.67937

H �153.7809 �246.70902 �246.62557 �246.67258
G �153.81059 �246.74357 �246.66039 �246.70911
R = phenyl Benzaldehyde
Eel
ZPE �345.47650 �438.40311 �438.32983 �438.39216

H �345.46918 �438.39372 �438.32053 �438.38239
G �345.50702 �438.43713 �438.36349 �438.42614
R = vinyl Acrolein
Eel
ZPE �191.86247 �284.78956 �284.71741 �284.78174

H �191.85714 �284.78243 �284.71036 �284.77406
G �191.88875 �284.81938 �284.74698 �284.81202

CPCM optimization in THF, B3LYP/6-31G*, and ZPE (scaled by
0.9806) corrected electronic, enthalpic, and free energies (298 K, 1
bar). Cyanide Eel

ZPE: �92.93493 a.u., enthalpy: �92.93163 a.u., free
energy: �92.95398 a.u. (cf. Table 1)
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Fig. 3 PO-TS, transition structure of phosphite-induced umpolung
of formaldehyde (CPCM-THF-B3LYP/6-31G*, bond distances in
Angstrom, angles at carbon refer to fixed substituents). A syn
OPCO conformer is less stable

Table 6 Total energies (a.u.) for umpolung transformations of
formaldehyde with different catalysts (Scheme 4)

Catalyst= Cyanide Adduct TS d1-species

Eel
ZPE �92.93493 �207.42374 �207.34183 �207.38523

H �92.93163 �207.41868 �207.33677 �207.38051
G �92.95398 �207.44991 �207.36792 �207.41107
Catalyst= Carbene
Eel
ZPE �608.24051 �722.74359 �722.67765 �722.74285

H �608.23395 �722.73466 �722.66858 �722.73296
G �608.26981 �722.77631 �722.71034 �722.77699
Catalyst= Phosphite
Eel
ZPE �645.74505 �760.22901 �760.1455 �760.19507

H �645.73836 �760.21986 �760.13644 �760.18565
G �645.77471 �760.26225 �760.17854 �760.22812

CPCM optimization in THF, B3LYP/6-31G*, and ZPE (scaled by
0.9806) corrected electronic, enthalpic, and free energies (298 K, 1
bar). Formaldehyde Eel

ZPE: �114.48361 a.u., enthalpy: �114.47979
a.u., free energy: �114.50528 a.u. (cf. Table 1)

Table 5 Relative energies (kcal mol�1) for umpolung transfor-
mations of formaldehyde with different catalysts (Scheme 4)

Catalyst= Adduct
formation

TS (activation
energy)

d1-species
formation

Cyanide Eel
ZPE �3.3 48.1 20.9

DH �4.6 46.8 19.4
DG 5.9 57.3 30.2
Carbene Eel

ZPE �12.2 29.2 �11.8
DH �13.1 28.3 �12.1
DG �0.8 40.6 �1.2
Phosphite Eel

ZPE �0.2 52.2 21.1
DH �1.1 51.3 20.4
DG 11.1 63.7 32.5

CPCM optimization in THF, B3LYP/6-31G*, and ZPE (scaled by
0.9806) corrected electronic, enthalpic, and free energies (298 K, 1
bar), relative to isolated adducts (cf. Table 6)
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kinetic, thermodynamic, and geometric assessments. N-
methylthiazol-2-ylidene, was found to be by far the
strongest umpolung catalyst, both with regard to
nucleophilic attack on the aldehyde as well as kinetic
and thermodynamic stabilization of 1,2-H-migration
and of the d1-intermediate. Further studies with focus on
the role of counterions and other electrofuges (e.g., SiR3

in Brook rearrangements) will provide an even better
understanding of umpolung catalysis.
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